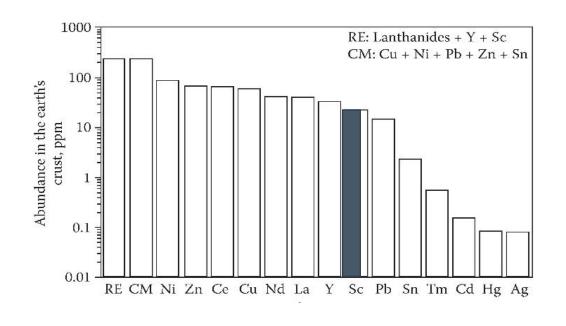


SCALE project has received funding from the European Union's Horizon 2020 Research and Innovation program under Grant Agreement No 730105

S C a l e

scandium 21


Sc

44.956 yttrium

39

00 004

Occurrence of Scandium

Sc is 'more rare' than all other REEs

- Sc is the 36th most abudent element in the crust
- Earth's crust abundance of 22 mg/kg, the occurrence of scandium is comparable with that of lead (14 mg/kg) and cobalt (25 mg/kg)
- However, scandium is rarely concentrated in nature and remains widely dispersed in the lithosphere as it lacks affinity to combine with the common ore-forming anions

00.900															
lanthanum	cerium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	lutetium	
57	58	59	60	61	62	63	64	65	66	67	68	69	70	71	
	$\mathbf{C}_{\mathbf{A}}$	Dr	Nd	Dm	Cm		64	Th			L r	Tm	Vh	1 '	
Ld	Le		INU	PIII	SIII	EU	Gu	U I	Dy					LU	1
138.91	140.12	140.91	144.24	[145]	150.36	151.96	157.25	158.93	162.50	164.93	167.26	168.93	173.05	174.97	

WHERE IS Sc FOUND?

Viable sources of **Sc** today

Bauxides and nickel laterite ores are proposed as the most promising **Sc** resources for future large scale production; **Parnassos/Greece could well be a worldwide resource for Sc!**

Supply of Scandium today

- A major source for scandium deposits was the now flooded Ashurst mine in Zhovti Vody outside Kiev, Ukraine, that was once a major harvesting ground for iron ore and uranium for the Soviet military.
- Today there is an active mine for Sc is in Kazahkstan
- Other Sc sources include REE byproducts in Kola Peninsula in Russia and Bayan Obo in China and there are several Acid Waste facilities (TiO₂ production) in China, USA, Philippines and Japan

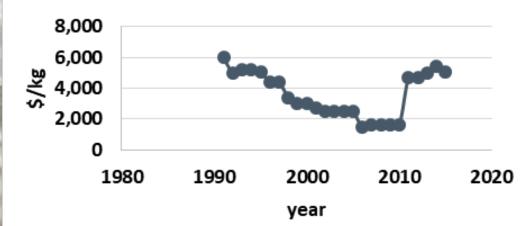
The current Sc world production is estimated at 10 – 12 tpy of scandium oxide

Main producers

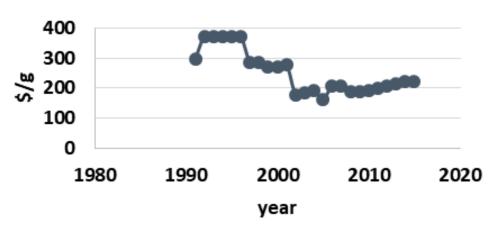
- China (66%)
- **Russia** (26%)
- Ukraine (7%)

THE ECONOMY OF Sc

12-14 tpa DEMAND Al - Sc 2% 10-12 tpa SUPPLY 100-150 \$/g P Sc VALUE CHAIN: 0.9 \$/g 5 \$/g 253 \$/g Sc₂O₃ 99,99% Sc₂O₃ 99% ScF3 99,99%


206 \$/g

Sc Metal


Scandium Market

Sc2O3 99.99% price per kg

On 24 February 2010, BLOOMENERGY announced that their devices (SOFC) were making electricity for 0.08-.010/kWh using natural gas (using Sc₂O₃ in the solid electrolyte)

Sc included on the 2017 list of Critical Raw Materials for the EU

Sc metal 99.9% price per gram

Sc HAS SUPERPOWERS!

SOLID OXIDE FUEL CELLS

Sc-stabilized Zirconia has **lowered operational temperatures** facilitating the **commercialization**

* LASERS WITH Sc GARNETS

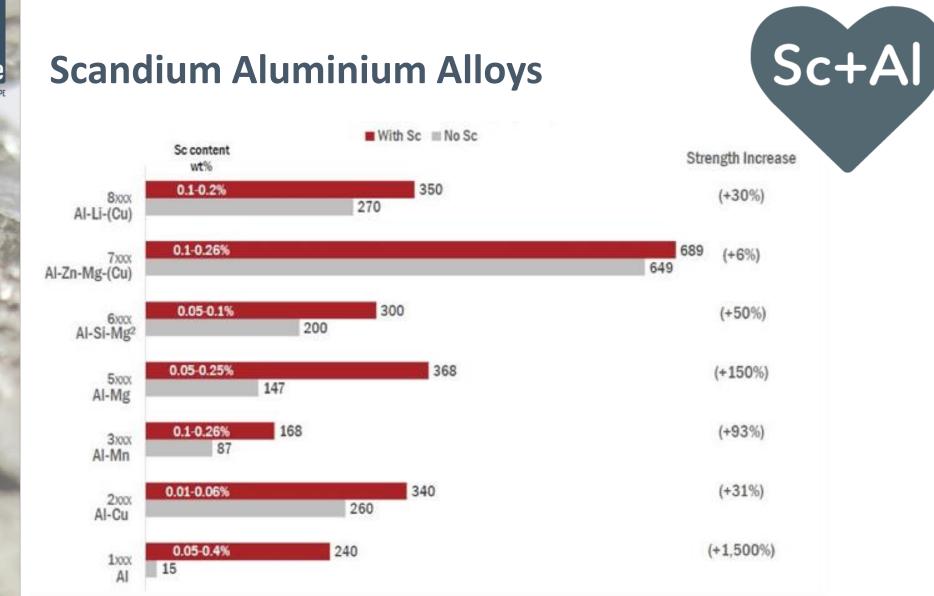
have 3 times higher efficiency than Y garnets

VATURAL LIGHT

Sc compound is used as phosphors for **high intensity 'natural' light** - close to solar optical spectrum

Lazer Garnet by II-VI (gadoliniumscandium-gallium)

BLOOMENERGY Sc-SOFCs deployed at NASA building



Scandium Aluminium Alloys

- Scandium –Aluminium alloys were first used in the 1980s for structural purposes in Soviet aircrafts and missiles.
- The strength that Scandium alloys brought to weldable alloys, allowed Soviet to built aircrafts (MIG-29) and utilize welded structures. This gave these planes tremendous weight, maneuverability and range advantages.

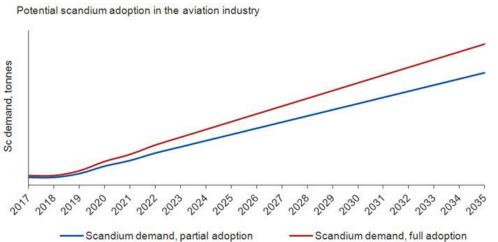
Sc offers the highest increment of strengthening per atomic percent of any alloying element when added to Al

Sc reduces **hot cracking during welding** of Al-alloys

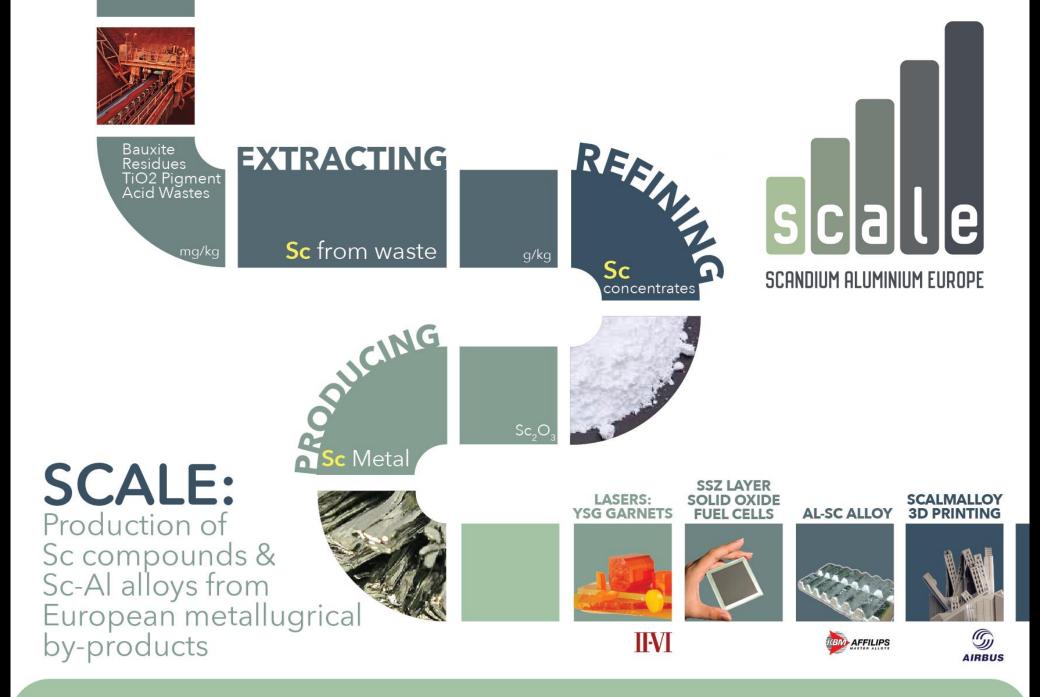
Sc Applications

ρ

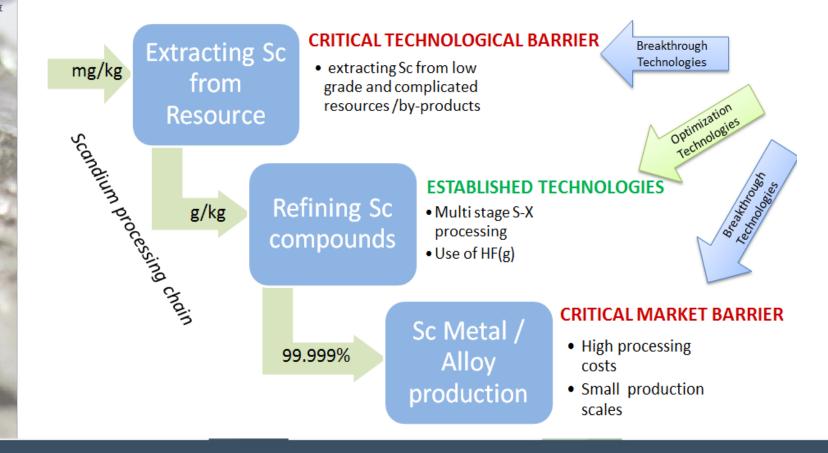
Sc Compound	Application	Today	Future			
Sc ₂ O ₃	SOFC – SSZ solid electrolyte	in market by Bloomenergy	Household use			
Sc ₂ O ₃	Er: YSGG garnets (Er:Y₃Sc₂Ga₃0₁₂) for optics in lazer application		Er:YSGG has 3 higher efficiency then Nd,Er:YAG in solid-state lasers radiating in the 3 μm			
Sc-Al alloy	High resistance Al alloy used in welding or casting – best Al alloy available	High End sporting equipment	Aerospace, Automotive			
Al-Mg-Sc (Scalmalloy [®])	3D Printing –licensed by Airbus to Apworks		Aerospace, Automotive			
ScF ₃	Material with negative thermal expansion coefficient		Advanced material composites			
20% Sc-80% Ti Carbide	doubling of the hardness TiC, to about 50 GPa, second only to diamonds in hardness.		Advanced materials			
Phosporous / Lighting	Scandium has a broad emission spectrum that generates a 'daylight' effect. Sc2O3 and ScVO4 are typical host materials for phosphorus in monitors	Stadium / studio lighting	Household lighting			
	The future is limited by high prices and uprelights yelve shain					


The future is limited by high prices and unreliable value chain

Scandium Emerging Applications


- In SOFC Sc-stabilized Zirconia has lowered operational temperatures leading to commercialization of the technology
- The Al-Sc-Mg alloy powder is used in 3D printing by AIRBUS

Sc demand expected to increase 30 fold in the next decade



APWorks. 2 December 2015 "We did produce 122 out of the 162 parts on our M400 out of SCALMALLOY®. The partition weights a massive 45% less than current Airbus A320 partition designs"

Scandium Production today

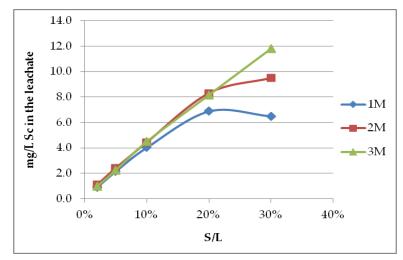
SCALE: AN RTD PROJECT DEDICATED IN DEVELOPING A NOVEL Sc SUPPLY CHAIN

Horizon 2020

🛗 4 year project

€ 7,000,000.00

Extracting Sc from Bauxite Residue (BR)



Mytilineos, Aluminium of Greece (AoG) ✓Sc: 97±3 mg/kg Aluminium Oxid Stadte, Germnay (AOS) ✓ Sc: 81±2 mg/kg

Selective Leaching of BR with H₂SO₄

Acid molarity effect on (a) Sc concentration for different S/L ratios (2-20%) and 60 min leaching period.

Concentration of Sc, Ti and Fe by different recycling steps [mg/L]

		Sc	Т	īi 👘	Fe		
Cycle	1M	2M	1M	2M	1M	2M	
1	3.9	4.5	1335	1520	905	1006	
2	7.2	8.6	2200	3184	1400	1933	
3	11	12.7	2800	4655	1500	2892	

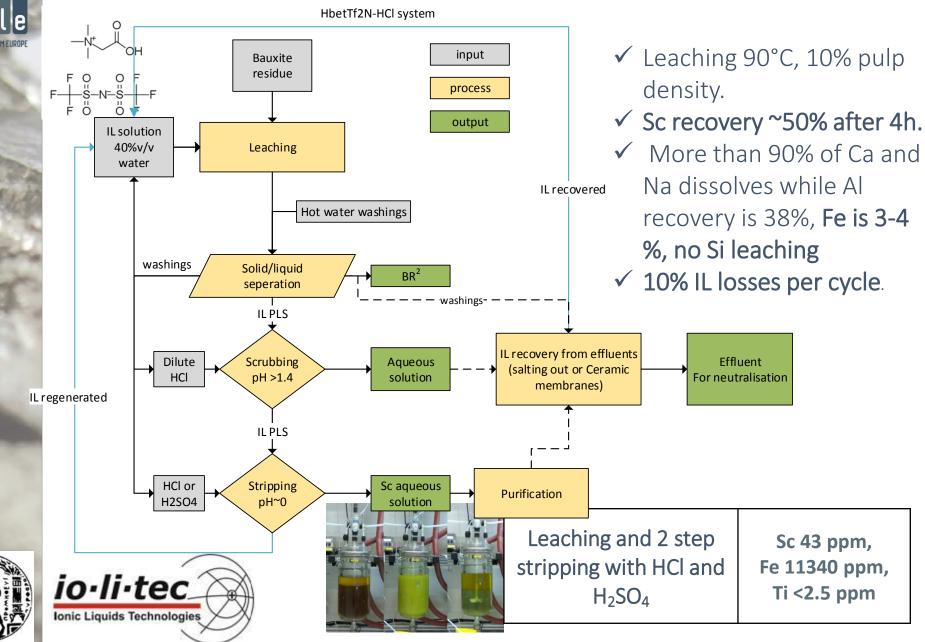
✓ Maximum Sc recovery from
 AoG BR ~ 60% when using fresh
 H2SO4 for three leaching steps.
 Fe recovery close to 10%.

 ✓ Maximum Sc concentration in final leachate ~13 mg/L when recycling the leachate on fresh BR, thrice (ambient conditions).

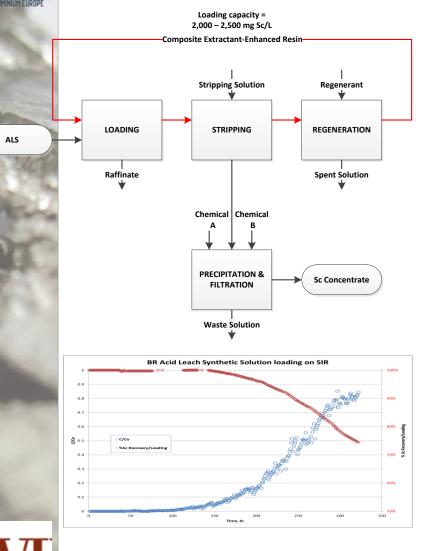
NTUA-ChemLab

S C a l e

Mechanochemical leaching of BR


Working steps in mechano-chemical leaching, (1)grinding breaker and balls with the red mud; (2)added acid; (3)grinding; (4)separation of the grinding balls; (5)&(6)separation of solution and solid by centrifugation; (7)&(8)resulting solution and solid residue ✓ The recovery of scandium is about 55-60% even with comparatively low acid concentration

✓ With I/s = 5 a scandium
 concentration of 11-12 mg/L
 can be achieved in a single
 leaching step



PROJECT GROUP IWKS

Leaching of BR with ionic liquid

II-IV SIR[®] Sc extraction from BR PLS

 Starting from a synthetic PLS and after 314 hours of loading (more than 450 bed volumes) cumulative % Sc recovery of 74% with a calculated loading capacity is 2,325 mg Sc/L II-VI SIR resin was achieved.

- ✓ 100% Sc recovery can be achieved at 100 hour loading.
- ✓ Thus a concentrate with 60gr/kg Sc (as oxide) has been produced from an initial PLS of 6 mg/L Sc.
- The limits for the presence of other metals in the PLS has been established. The iron concentration was found not be so critical as the titanium, zirconium and thorium ones.

Extracting Sc from TiO₂ Acid Waste (AW)

TRONOX, Netherlands

✓ Sc: 84±10 mg/kg in slurry✓ As filtercake ~250 mg/kg

II-IV SIR® Sc extraction from AW

- ✓ The SIR has been tested successfully in lab scale with the TRONOX acid waste stream.
- ✓ Sc uptake for this solution was 3,505 mg
 Sc/L II-VI SIR resin.
- ✓ Cumulative percent recovery of Sc after 60 bed volumes was 97%.
- The use of spent acid (15% HCl solution) from Tronox as reagent for SIR process (resin regeneration) was tested so as to take advantage of the availability of the solution in the Tronox plant facility, and was found to be a viable option.

KUNDA

Nanofiltration of Acid Waste from TiO₂ production

✓ Sc conc. x 2.5

ml

acidic

weste weiter

✓ Total volume more than halved

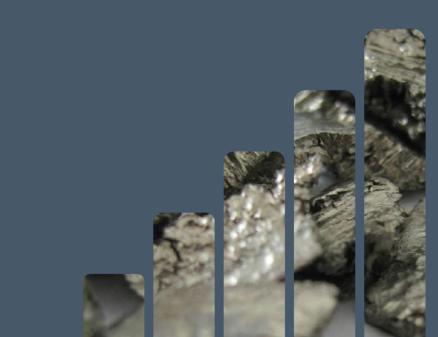
ph adjustment

- ✓ Extraction interfering metals >90 % removed
- \checkmark NF-concentrate ready for metal extraction tests
- ✓ Pilot design in progress in conjuction with new S-X flowsheet

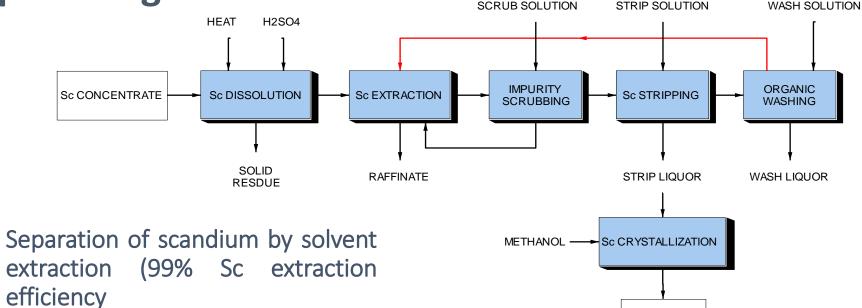
University of Applied Sciences and Arts Northwestern Switzerland School of Life Sciences

self-developed Using membranes, up to 93% of Sc retention from the acid waste steam has been achieved using acid resistant nanofiltration at 5 bar pressure, with up 12-fold higher Sc to retention in comparison to Fe. Nanofiltration

to:


540

1000 ml


RETRACE CODE

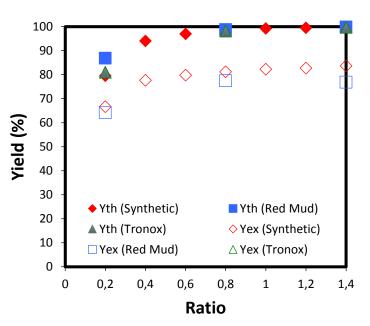
Optimizing the Sc purification

From concentrates to pure compounds

Optimizing Sc Purification

 Stripping of scandium from the loaded organic solution using aqueous ammonium fluoride 3) solution.

1)

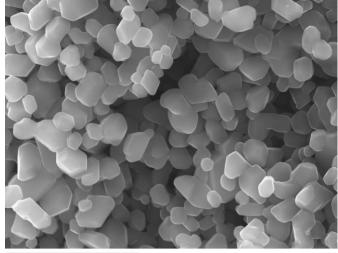

) Precipitation of tri-ammonium scandium hexafluoride by addition of methanol

Sc PRODUCT

- 4) The tri-ammonium scandium hexafluoride can be calcined to produce ScF3
- 5) Recovery of methanol by evaporation

S C a l e

Anti-solvent crystallization



✓ Precipitation from real strip liquors

 \checkmark (NH₄)₃ScF₆ was obtained as the precipitate in all experiments.

Organic to strip liquor v/v ratio vs precipitation yields

Ratio	BR	AW
1.4	99.20	100
0.8	98.54	98.73
0.2	98.31	98.46

10µm

Novel technologies for Sc and Al-Sc production

 Oxidic crucibles: low yields and purities 1960: Advancement of the process

 Tantalum crucibles used, 10 g pure metal obtained Up to date: in-situ production of Al-Sc

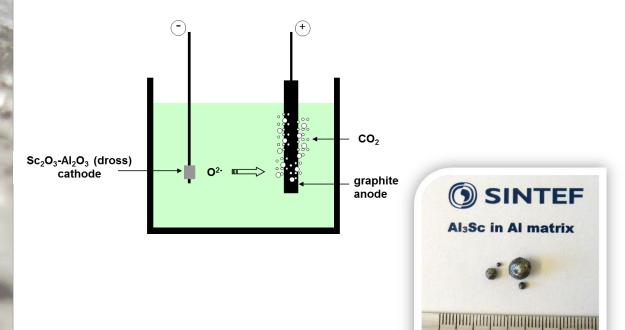
 Sc as alloying element for Al as prominent target of R & D

Metalothermic production of Al-Sc

- ✓ Lab scale aluminothermic production of Al- Sc master alloy from ScF₃ @1400 °C.
- ✓ Bulk Al-Sc alloys with contents up to 27 wt.-% Sc could be produced with no other impurities, at a Sc reduction yield of 77 %.

Al-Sc 27%

- ✓ Lab scale calciothermic of Al₂O₃-ScF₃
- ✓ Results indicate higher Sc yields at low pressures and high Ca surplus gassolid reaction probable.
- ✓ Intermediate temperatures around 1300 °C optimal

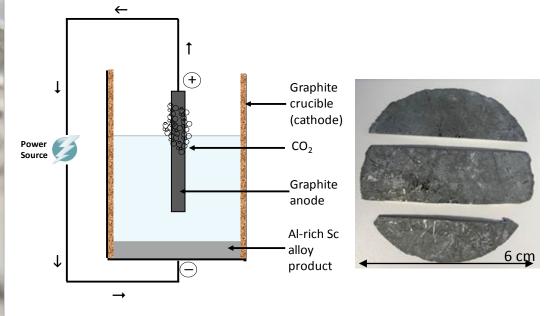


SCALE SCRNDIUM RLUMINIUM EUROPE

Electrochemical production of Al-Sc

Electrochemical de-oxidation process

 Al with 1 wt% Sc has been produced using dross waste from KBM as raw material in the CaCl₂-based melt at 900 °C.

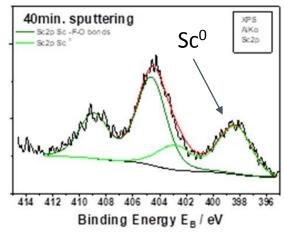

✓ Efficiency ca. 21%

Electrochemical production of Al-Sc

Modified Hall-Heroult process

 ✓ Al with 2.6 wt% Sc has been produced using Sc₂O₃ as raw material in the cryolite-based melt at 980 °C.

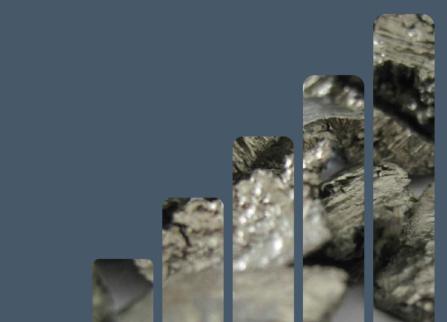
✓ Efficiency ca. 85%

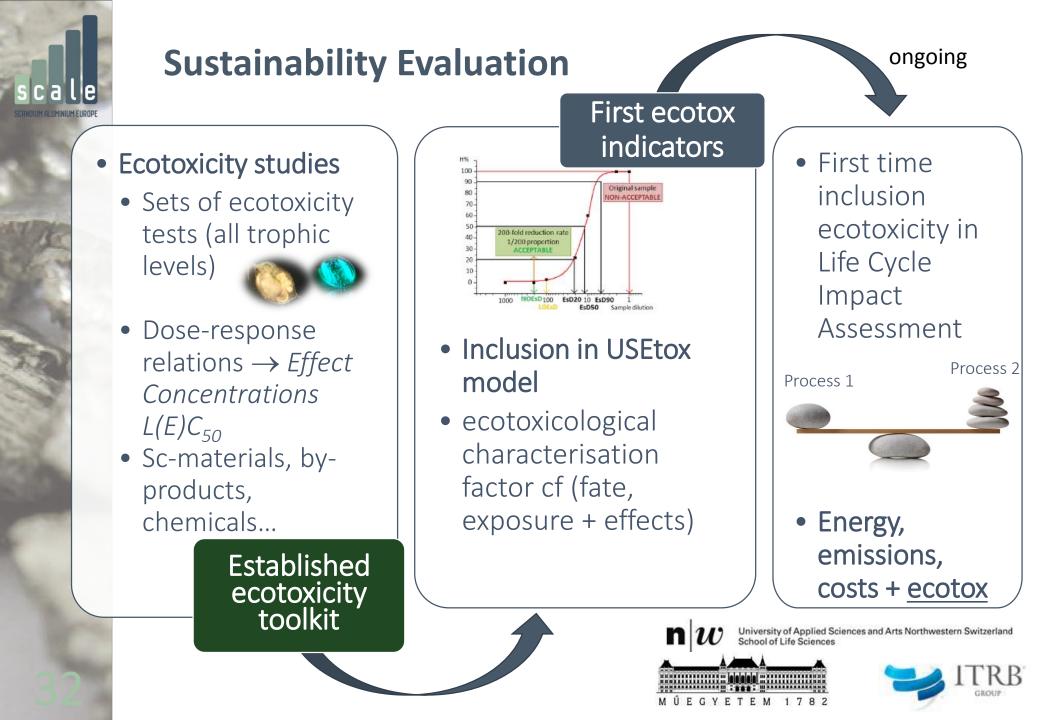


SCALE SCANDIUM ALUMINIUM EUROPE

Ionic Liquid electrowinning of Sc

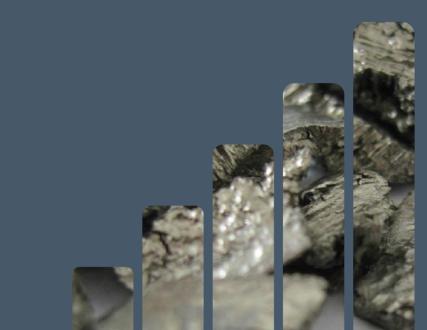
- Direct metallic Sc production from ScCl₃ dissolved in an ionic liquid (0.12 M [Sc]) was achieved at 30°C electrolysis temperature.
- 0,013g of Sc were deposited on an Al cathode
- The estimated energy consumption for Sc production on an Al cathode is 5-8 kWh/Kg Sc which is substantially lower to the one for production with molten salts (41kWh/kg) as well as the one of primary Al production (12-14kWh/kg)

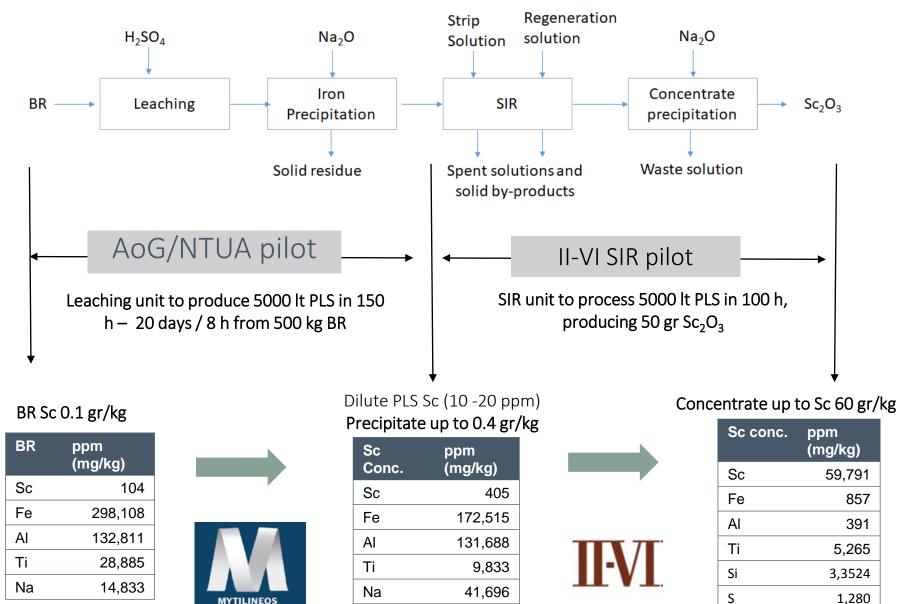




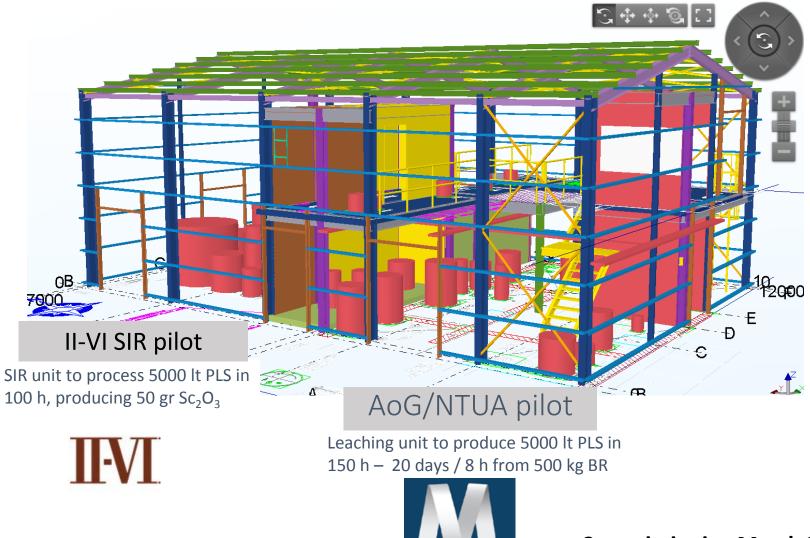
NTUA-LabMet

Sustainable value chain


Waste to Critical Resource


Pilot plant testing

From concentrates to pure compounds


scale SCANDIUM ALUMINIUM EUROPE

Pilot tests at Mytilineos

Pilot tests at Mytilineos

Commissioning March 2019

EU MARKET POTENTIAL

- Alumina Sector: up to 500 t/y of Sc
- Titania Sector: up to 140 t/y of Sc

SCALE RAW MATERIAL SOURCES

AoG Bauxite Residue: 130 g/t Sc; 750,000 t/y

AOS Bauxite Residue: 93 g/t Sc; 900,000 t/y

TRONOX acid waste filter cake: 150 g/t Sc; 50,000 t/y

The research leading to these results has been performed within the SCALE project and received funding from the European Community's Horizon 2020 Programme (H2020/2014-2020) under grant agreement n° 730105.

AFFILIPS

ERES2020 – The 3rd European Rare Earth Resources to be organized by SCALE

Details to be announced soon – The program will feature dedicated Scandium sessions

http://eres2017.eresconference.eu/

European Rare Earth RESources

http://scale-project.eu http://www.circulary.eu/project/scale/

Thymis Balomenos Mytilineos S.A. Metallurgy Business Unit

Thank you for your attention. Questions?