

High-strength AI-Mg-Sc alloy with 0.1wt.%Sc content

Dmitry Fokin

Light Materials and Technology Institute UC RUSAL, November 2018

RUSAL R&D

- In 2017, UC RUSAL set up the Light Materials and Technologies Institute (LMTI) in Moscow to develop new alloys and materials for customers requirements and to solve research and technology problems common to all the production facilities of the Company
- LMTI staff 32 employees, 6 of them have PhD degree, and 2 - Doctor of Sciences
- LMTI has its own testing centres to carry out general and specific tests (mechanical, corrosion, physical etc.) according to Russian and International methods
- Research directions LMTI:
 - alloys for die casting
 - alloys for high pressure die casting
 - wrought alloys
 - mathematical modeling in the development of new materials and processes
 - technologies for the production of pastes, pigments, gasifiers
 - metal matrix composite materials
 - additive technologies

Representative RUSAL R&D offices

LMTI Testing center

ILMIT R&D center can perform various tests according to the specific methods, which are necessary for the customer. Some methods can be developed if necessary

MOTIVATION

- □ Resources for increasing of mechanical properties of the AI-Mg alloys are exhausted
- □ It is known, that Sc is the most effective hardener of the Al-Mg alloys
- □ At the same time, addition of Sc in concentrations, which correspond to commercial Al-Mg-Sc alloys, increase significantly the price of material

Sc-containing materials can be applied in case of their cost efficiency

Influence of Sc on strength properties

As a simple criterion for economical efficiency of Sc adding, the price of 1 MPa of the rolled products is taken.

The greatest strength properties growth of Al-Mg system alloys is observed at Sc concentrations up to 0.1%. With a further increase of Sc concentration strength growth rate decreases.

Concentrations >0.3wt.%Sc are not commonly used for traditional casting and rolling technology

Al-Mg-0.1%Sc alloy can be considered as an possible alternative to AA2024 for aerospace application through:

- High YS value, close to 2024
- 5% lower density
- High fatigue characteristics
- Excellent weldability
- Good corrosion resistance
- No need for heat treatment

Problems with 2024 alloy:

- Additional costs for heat treatment operation
- Prone to warping
- Low corrosion resistance
- Low weldability

RUSAL AI-Mg-0.1%Sc alloy

RUSAL has developed a new AI-Mg-Sc alloy with 0.1wt% Sc content, combining:

- High strength properties comparable to commercial alloys with higher Sc content
- Lower price
- Good workability (as good as traditional 5xxx series alloys)

For serial production have been developed:

- Casting technology (slabs and billets)
- Rolling technology
- Forging technology

No special equipment is required.

Mechanical properties of AI-Mg-0.1%Sc (Rusal) and other commercial wrought alloys

Alloy	State	UTS, MPa	YS, MPa	Elongation, %
5083	0	315	145	15
1570 (Russia) 0.25%Sc	0	400	310	15
2024	Т3	465	325	10-16
Al-Mg-0.1%Sc (Rusal)	0	380-410	280-320	14-19

Promising fields of wide application for AI-Mg-Sc alloys

Aerospace

Shipbuilding

Source:Moss

Industrial production of the semi-finished products

MECHANICAL PROPERTIES of semi-products

Semi-product	State	Yield stress Rp0.2, [MPa]	Ultimate tensile stress Rm, [MPa]	Elongation, %	Modulus of elasticity [GPa]	Density, g/cm³
sheets	annealed	280-320	380-410	14-19		
extrusions	after extrusion	330	400	10	70	2.66
forgings	annealed	255	380	15		

CORROSION RESISTANCE

Test	Specification	Requirement	Typical values
NAMLT (Nitric Acid Mass Loss Test)	ASTM G67	<15 mg/cm ²	2 mg/cm ²
ASSET (Assessment of Exfoliation Corrosion Test)	ASTM G66	Within PB	PB

Industrial testing

12

It was proofed that alloy has good workability in standard technological operations along with its high mechanical properties and good weldability in comparison with 5083-type and 2024-type alloys, what makes it reasonable substitution for traditional alloys in aerospace construction.

Weldability

Alloy has shown good weldability by using MIG and EBW methods. Welded joint efficiency (UTS_{base} / UTS_{weld}) of Al-Mg-0.1%Sc alloy is equal 0.9 and identical to 5083type alloy.

UTS, MPa

Other properties

Fatigue

Test	Typical value	
Fatigue Strength	200 MPa	
(200 000 000 cycles, stress ratio R = 0.1)		

Tensile test at room temperature (after holding at 300 °C during 100 hours)

State	Sample	б _{0.2} , МПа
0	1.5mm	320
after holding at 300 °C during 100 hours	sheet	305

Charpy impact test (4.5mm sheet):

State	Welding method	Impact strength, kJ/m ²	Filler wire
0	-	371	
	EBW	606	
Welded joints	MIG	580 649	5083-type 1570 (0.25%Sc)

Available dimensions of slabs, billets and rolled products for delivery

Slabs:

Thickness, mm	Width, mm	Length, mm
300 560	1310 2150*	up to 6000
* on request		

Billets:

Diameter, mm	Length, mm
Ø 125 410	up to 6000

Sheets:

Thickness*, mm	1250x2500	1500x3000	2000x4000	2000x6000	2500x6000 ** 2000x8000 **
1-3	\checkmark	\checkmark	\checkmark		
4-12	\checkmark	\checkmark	\checkmark	\checkmark	

>12 ** (plates)

* thickness tolerances according to EN 485-3 (for hot rolling) and EN 483-4 (for cold rolling);

** on request

Thank you for your attention!

www.rusal.com www.aluminiumleader.com

Headquarters in Moscow:

1 Vasilisy Kozhinoi St., Park Pobedy – Victory Park Business Center, 121096, Moscow, Russia Phone: +7 (495) 720-51-70 +7 (495) 720-51-71 Fax: +7 (495) 745-70-46

For client queries:

RUSAL Marketing GmbH, Metalli Center Baarerstrasse 22 6300 Zug Switzerland Phone: +41 (41) 560 98 00 Fax: +41 (41) 560 98 01 E-mail: info-zug@rusal.com