<u>Current State of the Sc Recovery Possibilities during</u> <u>Hydrometallurgical Treatment of Lateritic Ni-Co Ores</u>

Dr. Şerif KAYA Researcher at META Nikel-Kobalt A.Ş. R&D Department

META Nikel-Kobalt A.Ş.: Turkey's 1st and Europe's only HPAL Ni-Co concentrate facility

OUTLINE

- Current Sc Sources and Supply/Demand Issues:
- Laterite Reserve/Production Information:
- Companies Developing New Sc Projects:
- Scandium Recovery from Lateritic Ni-Co Ores:
- Sc Distribution in META HPAL Plant
- References:

Current Sc Sources and Supply/Demand Issues

No primary Sc mine production yet!

- As a by product during Iron-Uranium Production,
- As a by product during <u>Tungsten</u> Production,
- As a by product during <u>Titanium</u> Production,
- As a by product during <u>Zirconium</u> Production,
- As a by product during <u>REE's</u> Production, [1,2]

- Supply is only ~5-12 tons/year in the form of Sc₂O₃ and the price is too high (2000-4500 \$/kg 99.9 Sc₂O₃) for commercial applications. [3]
- Currently, only used in appliations where performance is much more important than the price (military/sporting goods, space appl. etc.)

 However; when <u>consistent</u>, <u>abundant</u>, <u>reliable</u> and <u>low cost scandium supply</u> is achieved, commercial applications will certainly boom!

The solution for the short term promising source of the <u>huge</u> and <u>urgent</u> scandium need of the industry:

LATERITES

🕑 ZORLU

World Laterite Reserves

4

Trend in Nickel Production from Laterites

- In 1950's <10% of primary Ni was produced from lateritic ores,
- In 2003 ~42% of primary Ni was produced from lateritic ores,
- In 2012 ~50% of primary Ni was produced from lateritic ores,
- In 2020's It is expected that 55-60% of Ni will be produced from lateritic sources.

Companies Developing New Sc Recovery Projects

5

Company & Project/Deposit Name	Location	Head Grade (mg/kg)	Cut-off Grade (mg/kg)	Contained Sc ₂ O ₃ (tons)	By- products	Production Route	Current Status	
Clean TeQ Syerston/Sunrise Ni-Co-Sc Project (Previously Ivanhoe Mines)	Australia	583	300	18,000	Ni, Co	HPAL Sc IX (Resin in Pulp) IX-SX for Ni&Co sulphate	DFS completed in 2018 Construction is planned in 2019.	
Scandium Int.& Scandium Inv. LLC. Nyngan Scandium Project	Australia	409	100	3,135	None	HPAL SX	DFS completed in Waiting financing	
Platina Resources Ltd. (Owendale Sc-Pt Project)	Australia	384	300	16,500	Ni, Co, Pt	HPAL SX	PFS	
Metallica/Australian Mines SCONI Project	Australia	208	120	3,000	Ni, Co	HPAL SX	DFS	
Jervois/Australian Mines Flemington Deposit	Australia	450	300	2,085	Ni, Co	HPAL SX	PFS	
Imperial Mining Crater Lake	Canada	-	-	-	Nb, Ti, Zr	-	-	
Niocorp Niobium Project Elk Creek	USA	72	-	3,400	Nb	-	-	
RUSAL Al Corp. – From Red Mud by carbonate/bicarbonate leaching	Russia	-	-	-	-	Carbonate Leaching IX	Currently producing Sc_2O_3 in its pilot plant facilities.	

[9-10 and corporate webpages]

- When compared to NaOH leaching of Bauxite ores in Al production, Sc does not dissolve during leaching and remain in the Leach Residue-Red Mud.
- Depending on the ore mineralogy <u>80-95 % of Sc in lateritic ores dissolves during HPAL</u>. [11,12]
- <u>At META-Gördes HPAL Plant, Sc leach recovery is ~80%</u>.

Main Ni-Co Recovery Options

1-MSP (Mixed Ni-Co Sulfide Ppt.)

- Coral Bay (Philippines)
- Taganito (Philippines)
- Ambatovy (Madagascar)
- Moa Nickel (Cuba)

6

Murrin Murrin (Australia)

2-MHP (Mixed Ni-Co Hydroxide Ppt.)

- Ramu Nickel (Papua New Guinea)
- Ravensthorpe (Australia)
- Cawse (Australia)
- META Nikel-Kobalt A.Ş. (Turkey)

<u>3-Direct Solvent Extraction</u>

- Bulong (Australia)
- Goro Nickel (New Caledonia)

Companies Developing New Sc Projects

Companies Already Operating HPAL Plants for Ni-Co Production

Sumitomo Metal Mining Co.

- <u>Coral Bay & Taganito MSP HPAL Plants (Philipinnes)</u>
- In 2013, Pilot Plant constructed in Coral Bay 10 kg/month Sc₂O₃ capacity, and the industrial plant in Taganito HPAL and Harima Refinery (Japan) having 7.5 ton/year Sc₂O₃ capacity was completed in 2017.
- Sc concentration by IX and purification by SX.
- Product Portfolio: Sc₂O₃

META Nikel-Kobalt A.Ş.

- Gördes MHP HPAL Plant-Eskişehir Yunusemre Deposit (40-120 g/ton Sc)
- Patent Applications for IP.

--- C. S. S.

- Scandium fluoride chemicals are targetted [13, 14].
- Lab. scale process chemistry was proved in bench and semi-pilot scale.
- <u>Product Portfolio</u>: (NH₄)₂NaScF₆, (NH₄)₂KScF₆,
- (NH₄)₃ScF₆, ScF₃ and mixture of (NaScF₄ Na₃ScF₆), (K₃ScF₆ - KSc₂F₇)

🕑 ZORLU

Europe's CRM Data Management & The European Scandium Inventory Workshop, Berlin

10

Behaviour of Sc in Gördes HPAL Plant during HPAL during 250 days of operation

11

PLS	5	Strip Liquor			
Ag ppm 0		Ag ppm	0		
Al ppm	17771	Al ppm	2		
As ppm	4	As ppm	0		
Ca ppm	513	Ca ppm	0		
Cd ppm	0	Cd ppm	0		
Co ppm	46	Co ppm	1		
Cr ppm	348	Cr ppm	0		
Cu ppm	221	Cu ppm	0		
Fe ppm	1205	Fe ppm	7		
Mg ppm	2980	Mg ppm	3		
Mn ppm	260	Mn ppm	0		
Ni ppm	1344	Ni ppm	0		
Pb ppm	0	Pb ppm	0		
Sc ppm	147	Sc ppm	2969		
Zn ppm	64	Zn ppm	0		

<u>High Purity (NH₄)₃ScF₆ Product</u> <u>High purity ScF₃ can be obtained after calcination.</u>

NIKEL KOBALT A.Ş.

Sc Recovery Possibility from Laterites-Worst Case Scenario!

13

🖸 ZORLU

•	1-) Coral Bay – MSP	24 000 ton Ni,									
•	2-) Taganito – MSP	36 000 ton Ni,	USGS 2018 Price Data	→ Pi	urity (%) 🔽	Sample Size	2013 🔻	2014 -	2015 -	2016	2017 💌
•	3-) Murrin Murrin – MSP	40 000 ton Ni ,	Scandium Acetate, US\$/per gram		99.9	5 gr	51.90	43.00	43.00	44.00	44.00
•	4-) Ambatovy – MSP	40 000 ton Ni,	Scandium Chloride, US\$/per gram		99.9	5 gr	148.00	123.00	123.00	126.00	124.00
•	5-) Moa Bay – MSP	30 000 ton Ni,	Scandium Iodide, US\$/per gram		99.999	5 gr	228.00	187.00	187.00	149.00	183.00
•	6-) Ramu – MHP	35 000 ton Ni	Scandium Oxide, US\$/per gram		99.99	5000 gr	5.00	5.00	5.10	4.60	4.60
•	7) Devenetherne MHD	40.000 ton Ni	Scandium Fluoride, US\$/per gram		99.9	5 gr	253.00	263.00	263.00	270.00	277.00
•	7-) Ravensthorpe – Minp	40 000 ton M,	Scandium Ingot, US\$/per gram		-	5 gr	175.00	134.00	134.00	107.00	132.00
•	8-) META Nikel-Kobalt – MHP	10 000 ton Ni,									

Approximately: ~250 000 ton Ni/year comes from laterites

If ores contain ~1% Ni \rightarrow ~25 million tons of lateritic ore processed annually!

If lateritic ores contain ~40 g/ton Sc (worst case) ~(25 million tons * 40 g/ton = 1000 tons Sc) enter into the HPAL process annually.

If ~50% of Sc recovered overall during HPAL \rightarrow ~500 tons Sc production (worst case) is possible with the current scenario.

By taking long term (2000 /ton for Sc_2O_3) and (3000 /ton for ScF_3)

500 tons Sc \rightarrow 750 tons Sc₂O₃, Economic Value: (750 tons * 1000 \$/kg) = 0.75 Billion USD/year

500 tons Sc \rightarrow 1100 tons ScF₃, Economic Value: (1100 tons * 1500 \$/kg) = 1.65 Billion USD/year

QUESTIONS & ANSWERS

For the widening of Sc market and applications in a sustainable manner;

- <u>Reliable</u>,
- <u>Secure</u>,
- Long-term,
- Open to collaborations,

As META, we are ready and confident about producing;

- $\checkmark (NH_4)_2 NaScF_6, (NH_4)_2 KScF_6,$
- $\checkmark \text{ Mixture of (NaScF}_{4} Na_{3}ScF_{6}) \text{ or (K}_{3}ScF_{6} KSc_{2}F_{7})}$
- $\checkmark (NH_4)_3 ScF_6,$

 \checkmark And, <u>ScF</u>₃ if collaborated with serious partners.

THANK YOU FOR YOUR ATTENTION 🙂

REFERENCES

- 1. Wang W. and Cheng C.Y. (2011). Separation and purification of scandium by solvent extraction and related technologies: A review. J. Chem. Technol Biotechnol 86 (10): 1237-1246.
- 2. Gambogi J. (2018). USGS Mineral Commodity Summaries, January 2018, United States Geological Survey (USGS): 144-145.
- 3. Riggall S. (2015). Australian scandium supply A paradigm shift for a strategic metal AeroMat'15, Long Beach, California ASM International.
- 4. A.D. Dalvi, W.G. Bacon and R.C. Osborne. The past and future of nickel laterites, PDAC 2004 International Convention, March 7-10, (2004), pp 1-27. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.732.7854&rep=rep1&type=pdf
- 5. Jolly, P. Comparison of Various Methods for Calculating Cash-Costs-Focus on Nickel Industry. In ALTA 2012 Nickel/Cobalt/Copper-Processing of Laterites. (2012). Perth, Australia: ALTA Metallurgical Services.
- 6. Sudol, S., The thunder from down under: Everything you wanted to know about laterites but we were afraid to ask. Canadian Mining Journal, (2005).
- 7. Marsh E., Anderson E., Gray Floyd. Nickel-Cobalt Laterites-A Deposit Model, (2010), USGS Scientific Investigations Report 2010-5070-H. Available online: https://pubs.usgs.gov/sir/2010/5070/h/pdf/SIR10-5070-H.pdf
- 8. Global Mining Research (2018), HPAL: Upping the Pressure. Available online: https://www.gigametals.com/site/assets/files/4861/2018-03-19-hpal.pdf
- 9. Ricketts N. and Duyvesteyn W. (2017). <u>The current status of scandium supply projects and their technical challenges</u>. ALTA'17 Nickel-Cobalt-Copper Conference 20-27 May, Perth/Australia: ALTA Metallurgical Services.
- 10. Eclestone C., (2018). Scandium-Unobtainium no more?, Hallgarten & Company. Available online: http://www.hallgartenco.com/file.php?path=Mining&filename=Scandium_Sector_July_2018.pdf
- 11. Haslam H. and Arnall B. (1999). An investigation into the feasibility of extracting scandium from nickel laterite ores. Proceedings of ALTA 1999 Nickel/Cobalt Pressure Leaching & Hydrometallurgy Forum, Perth, Australia, ALTA Metallurgical Services.
- 12. Kaya Ş. and Topkaya Y.A. (2016). Extraction behaviour of scandium from a refractory nickel laterite ore during the pressure acid leaching process. <u>Rare Earths Industry: Technological,</u> Economic and Environmental Implications. Ismar Borges de Lima and Walter Leal Filho: 171-181.
- 13. İplikçioğlu A.S. and Topkaya Y.A, (2015). Recovering scandium and derivatives thereof from a leach solution loaded with metals obtained as a result of leaching lateritic ores comprising nickel, cobalt and scandium, and secondary sources comprising scandium. WO2016209178.
- 14. Y- Yeşil M., İplikçioğlu S., Ege D. E., (2018). Development of the Gördes Nickel-Cobalt HPAL Project and Scandium Recovery. Proceedings of ALTA 2018 Nickel-Cobalt-Copper Sessions, Perth, Australia: ALTA Metallurgical Services
- 15. Kaya Ş, Topkaya Y., Dittrich C., (2015). Hydrometallurgical Extraction of Scandium from Lateritic Nickel Ores. Proceedings of BR 2015 Bauxite Residue Valorisation and Best Practices, Leuven, Belgium. Available Online: http://www.meab-mx.se/News/MEAB-METU%20BR2015%20Manuscript.pdf
- 16. Kaya Ş., Dittrich C., Stopic S., Friedrich B., (2017). Concentration and Separation of Scandium from Ni Laterite Ore Processing Streams. Metals, 2017, 7, 557. Available Online: https://www.mdpi.com/2075-4701/7/12/557

Additional Slides

16

ZORLU

World Laterite Reserves

18

🖸 ZORLU

Details of Lateritic Deposits

Laterites are mainly composed of:

- Fe rich, Mg, Si poor Limonitic (Fe oxide dominant), and
- Fe poor, Mg, Si, rick **Saprolitic (Mg silicate dominant)** zones (more amenable to FeNi and NPI)

Europe's CRM Data Management & The European Scandium Inventory Workshop

(more amenable to HPAL)

APPLICATIONS of Sc

🕑 ZORLU

19

Clean TeQ Sc Recovery Circuit

Clean TeQ Sc Recovery Circuit

The changing face of nickel – stagnation in sulphide production as laterites take off – mine production basis

New Caledonia has not participated in the laterite ore surge

Sc from Bauxite Residues (Red Mud)

Environmental concerns and huge economic potential, force the exploitation of Red Mud for Sc recovery.

Hydrometallurgical Approaches

- Selective Leaching
- \checkmark (mineral acids: H₂SO₄, HCl, HNO₃),
- ✓ (carbonate leaching),
- ✓ (Ionic liquids),
- <u>IX Solvent Extraction (Recovery & Purification)</u>

Pyro-Hydrometallurgical Approach

- <u>Reductive Roasting & Magn. Separation</u>
- <u>Reductive Smelting of BR for Fe rec. (Pig Iron)</u>
- ✓ > 98% Sc reported in the slag
- Leaching & Recovery by IX-SX

Sc from Bauxite Residues (Red Mud)

- 25
- Worldwide there is an annual bauxite residue production of <u>120 million tonnes</u> (dry matter) and a total inventory of <u>3 billion tonnes</u>, stored in huge tailing ponds. Sc is enriched ~2 times in the BR and represents >95% of the economic value of rare earth elements in red mud.

Environmental concerns and huge economic potential, force the exploitation of Red Mud for Sc recovery.

Sc from Bauxite Residues (Red Mud)

27 Companies Developing New Sc Projects

Project	Project Name							
Characteristic	Nyngan	Syerston	Owendale	ScONi	Flemington			
	Scandium			Metallica/	Jervois/			
	International		Platina	Australian	Australian			
Proponent	Mining Corp	Clean TeQ	Resources	Mines	Mines			
	DFS	PFS (Sc only)	Scoping/ PFS	PFS by	Scoping			
Study Status	Completed	PFS (+Co,Ni)	underway	Metallica/	Completed by			
				DFS by AUZ	AUZ			
Next Steps	Financing	DFS	PFS	DFS	PFS			
Cut-off Grade	100 ppm	300 ppm	300 ppm	120 ppm	300 ppm			
Head Grade	409 ppm	583 ppm	384 ppm	208 ppm	450 ppm			
By-products	None	Co, Ni	Co, Ni, Pt	Co, Ni	Co, Ni			
Resource	3,135	11,819	16,500	1,950	2,085			
(t Sc ₂ O ₃)								
Recovery	83.7%	88%	86%	81.5%	76.2%			
Product %	99.8%	99.9%	99.9%	99.99%	99.9%			
Capacity (tpa)	38	49.2	30	68	50			
Process	HPAL/SX	HPAL/RIP IX	HPAL/SX	HPAL/SX	HPAL/SX			
CAPEX	US\$77.8M	US\$75M	US\$73.5M	US\$178	AUD\$74			
OPEX	US\$556/kg	US\$444/kg	US\$598/kg	US\$853	AUD\$531			

Lateritic Ni-Co resources seem highly advantageous;

- <u>Urgent</u>,
- <u>Reliable/secure</u>,
- Sufficient,
- Long-term/stable,
- <u>Reasonaly priced</u>,
- Sustainable,

Sc Production in the near future!

🕑 ZORLU

Europe's CRM Data Management & The European Scandium Inventory Workshop

